Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Proceedings of SPIE - The International Society for Optical Engineering ; 12444, 2023.
Article in English | Scopus | ID: covidwho-20240563

ABSTRACT

Since the end of 2021, Omicron, the new variant of SARS-CoV-2, has continued to spread as the predominant strain of COVID-19. Compared to previous variants, Omicron causes milder symptoms, which are similar to symptoms of other common respiratory infections, such as flu. In this work, we develop a silicon photonic chip-based biosensor for COVID-19 and flu detection using subwavelength grating micro-ring resonator. The biosensor realizes the detection of two pathogens with high sensitivity (1.31 fg/mL) and specificity. Besides, the microfluidic channel offers a promising solution for point-of-care detection. © 2023 SPIE.

2.
Nanophotonics ; 2023.
Article in English | Scopus | ID: covidwho-2295848

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease that continues to develop new variants. A crucial step in the quest to reduce the infection is the development of rapid and reliable virus detectors. Here, we report a chip scale photonic sensing device consisting of a silicon-nitride double microring resonator (MRR) for detecting SARS-CoV-2 in clinical samples. The sensor is implemented by surface activation of one of the MRRs, acting as a probe, with DNA primers for SARS-CoV-2 RNA, whereas the other MRR is used as a reference. The performance of the sensor is determined by applying different amounts of SARS-CoV-2 complementary RNA. As will be shown in the paper, our device detects the RNA fragments at concentrations of 10 cp/μL and with sensitivity of 750 nm/RIU. As such, it shows a promise toward the implementation of label-free, small form factor, CMOS compatible biosensor for SARS-CoV-2, which is also environment, temperature, and pressure independent. Our approach can also be used for detecting other SARS-CoV-2 genes, as well as other viruses and pathogens. © 2023 the author(s), published by De Gruyter, Berlin/Boston 2023.

3.
25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2021 ; : 1605-1606, 2021.
Article in English | Scopus | ID: covidwho-2012142

ABSTRACT

The great advances in silicon photonic-sensing technology have made it an attractive platform for wide sensing applications. The small size of chip and detection system makes photonic microring resonator can be used in clinic for quick detection of disease. Here, we employ the high sensitivity of the photonic sensor toward the change of refractive index for the detection of SARS-CoV-2 virus spike proteins and botulinum toxin in water. The system require very small amount of sample 50uL with high sensitivity, in short 1hr without pre-treatment required. The measurement can be automatic with minimum manpower involved. Moreover, the system can be multiplexed to detect a few target analytes at the same time in one sample. © 2021 MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. All rights reserved.

4.
Sensors (Basel) ; 21(16)2021 Aug 08.
Article in English | MEDLINE | ID: covidwho-1376955

ABSTRACT

In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor.


Subject(s)
Carbon Dioxide , Silicon
5.
ACS Sens ; 5(9): 2663-2678, 2020 09 25.
Article in English | MEDLINE | ID: covidwho-714278

ABSTRACT

The global sanitary crisis caused by the emergence of the respiratory virus SARS-CoV-2 and the COVID-19 outbreak has revealed the urgent need for rapid, accurate, and affordable diagnostic tests to broadly and massively monitor the population in order to properly manage and control the spread of the pandemic. Current diagnostic techniques essentially rely on polymerase chain reaction (PCR) tests, which provide the required sensitivity and specificity. However, its relatively long time-to-result, including sample transport to a specialized laboratory, delays massive detection. Rapid lateral flow tests (both antigen and serological tests) are a remarkable alternative for rapid point-of-care diagnostics, but they exhibit critical limitations as they do not always achieve the required sensitivity for reliable diagnostics and surveillance. Next-generation diagnostic tools capable of overcoming all the above limitations are in demand, and optical biosensors are an excellent option to surpass such critical issues. Label-free nanophotonic biosensors offer high sensitivity and operational robustness with an enormous potential for integration in compact autonomous devices to be delivered out-of-the-lab at the point-of-care (POC). Taking the current COVID-19 pandemic as a critical case scenario, we provide an overview of the diagnostic techniques for respiratory viruses and analyze how nanophotonic biosensors can contribute to improving such diagnostics. We review the ongoing published work using this biosensor technology for intact virus detection, nucleic acid detection or serological tests, and the key factors for bringing nanophotonic POC biosensors to accurate and effective COVID-19 diagnosis on the short term.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Nanostructures/chemistry , Pneumonia, Viral/diagnosis , Surface Plasmon Resonance/methods , Antigens, Viral/analysis , Betacoronavirus/chemistry , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Genome, Viral , Humans , Immunoassay/methods , Nanostructures/radiation effects , Pandemics , SARS-CoV-2 , Serologic Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL